
International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 1455
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A Preliminary Survey of Combinatorial Test
Design Modeling Methods

Preeti Satish, Krishnan Rangarajan

Abstract— Combinatorial Testing is a systematic black box testing method. Combinatorial test model derivation is the first and primer step
in it and till date it is practiced manually. The paper provides an insight into, to the best of our knowledge, the first survey specific to the test
model derivation step of combinatorial testing. The survey focuses on comprehending and consolidating the state-of-art work carried. The
survey reveals that there is huge scope for future work in terms of more empirical studies and new automated approaches as the
automation of the same is still in a very naive stage.

Index Terms— Testing, model based testing, combinatorial testing, pairwise testing, test automation, test model, software quality;

—————————— ——————————

1 INTRODUCTION
Software quality is an essential attribute of software and

can be achieved through effectual testing. Testing is a method
of exercising the software with precise inputs and observe the
output for correctness followed by amending and revising the
software as needed. There are two types of testing approaches
namely white-box and black-box (BB) testing. The intention of
white-box testing [1] is to test the internal implementations of
the program like program statement and data structures. The
bases for test case generation are the internal structures of the
program such as the program code. The different approaches
to white-box testing are control flow based testing, data flow
based testing, and mutation testing. On the contrary, the inten-
tion of black box testing is to test the external behavior of the
software. It tests the functionality of the system by exercising
the different input and output conditions to the required cov-
erage level and quality. Therefore, it is also known as func-
tional testing or behavioral testing. The bases for test case de-
rivation are the external descriptions of the software, like re-
quirements document and design parameters. The different
approaches to BB testing are Exhaustive testing, equivalence
partitioning, Cause-Effect Graphing, Combinatorial testing,
State-Based Testing and Error Guessing [2]. Among these BB
testing techniques the Combinatorial Testing (CT) [3] is gain-
ing high importance because of its spectacular results. CT fol-
lows a rigid testing steps namely (1) Test Model derivation, (2)
Test case generation, (3) Test Execution, (4) Fault Identification
and Analysis (5) Regression Testing. Among these steps, the
test model derivation is a very fundamental and an imperative
stage, as the next steps are mainly dependent on the model.
Test Model derivation is practiced manually in the current
practical scenario, and the automation of it is still in an emerg-
ing stage. Though various surveys articles are published in the
literature corresponding to entire CT procedure [4] or test case
generation of CT [5][6], there are no survey articles presented
specific to CT modeling step. Therefore, considering this state-

of-art and inherent importance of CT modeling, we bring out
the potential of it in the form of a survey. The paper is orga-
nized as follows. Section 2 states the difference between func-
tional testing and Model Based Testing (MBT) and CT, section
3 presents the test model overview, section 4 presents the sur-
vey conducted followed by the conclusion and future work.

2 FUNCTIONAL TESTING, MBT AND CT
In any testing technique, test case generation plays an im-

portant role in the overall testing process. Tests Cases (TC’s)
form the heart of testing because the quality of TC’s governs
the quality of test conduction and the associated software
quality. Most of the times TC’s are constructed directly either
manually or automatically usually from requirements docu-
ments as shown in fig.1a. MBT techniques [7] have shown pro-
lific advances in the recent years. Model based testing is a test-
ing technique, wherein first a model of the SUT is created from
the requirements document and then the TC’s are generated
automatically from the model as depicted in fig.1b. Thus the
main intent of MBT is automation. In MBT, the quality of test-
ing is directly dependent on the quality of the model created.
Therefore, the model must be concise, precise and abstract in
nature. Developing a model at the right level of abstraction is
the key success to MBT. MBT is seen as BB testing because
TC’s are generated from the model that is built from require-
ments and not source code. Models can be used to depict vari-
ous facets of SUT. Examples of different kinds of models are
FSM, state charts, activity diagrams, sequence diagram, Mar-
kov chains, and grammars. Among these, FSM, state charts,
activity diagrams, sequence diagram are supported by Unified
Modeling Language (UML), which has become a defacto stan-
dard for modeling and design of software systems [8]. UML
encompasses a spectrum of diagrams to model the software
and visually interpret them at behavioral, interactional or
structural level. UML behavior diagrams are extensively used
for test case generation in the recent years because they embed
the dynamic aspects of the system. The volume of papers in
the field of UML based MBT and its survey is enormous [9]
[10]. However, CT is a systematic testing methodology that
calls for a test model (test design model) to be developed first.
A subset of TC’s is then generated by carefully selecting from
the test model as shown in fig 1c.

————————————————
• Preeti Satish, Associate Professor, Dayananda Sagar College of Engineer-

ing, India, E-mail: preetisatish8@gmail.com
• Krishnan Rangarajan, Professor, CMR Institute of Technology, India, E-

mail: krishnanr1234@gmail.com

IJSER

http://www.ijser.org/
mailto:preetisatish8@gmail.com

International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 1456
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Fig. 1. (a) Manual and Automated testing (b) MBT (c) CT

3 OVERVIEW OF TEST MODEL
In combinatorial testing (CT), which deals with testing

combinations of input, modeling the test space is an important
pre-requisite and the efficiency of CT largely depends on this
input space [4]. The test models or the Combinatorial Test De-
sign (CTD) model enclose information about parameters, val-
ues, and the constraints. An example test model of an applica-
tion is as shown in the fig. 2. The application here is expected
to run on a variety of platforms like different kinds of operat-
ing systems. The test parameters are operating system and
browser. Each parameter has multiple values like the parame-
ter browser has two values Firefox and Internet Explorer and
parameter operating system has two values Windows and
Linux. An example of a constraint may be that value Linux of
parameter operating system is chosen, then the value Internet
Explorer of parameter browser cannot be selected. Examples
of test factors are user inputs, configuration parameters inter-
nal and external events of the SUT [11].

 Fig. 2. An example of CT Test Design Model

 4 SURVEY
As per our understanding, the volume of papers dealing

with the derivation of the test design model is very less, and
no survey has been conducted so far. Hence, as a preliminary
work, we concentrate and project the work carried out in the
derivation of CT test design model for functional testing from
UML models. We have collected around 20 main papers that
cover different modeling methods.

The classification tree method (CTM) introduced by Groch-
tmann et al. [12] has been successfully tried out on real exam-
ples in Daimler-Benz Group. The initial step is to identify the
classifications (parameters) and classes (values). They define
two types of classifications. P-type classification represents an
input parameter, and e-type classification represents an envi-

IJSER

http://www.ijser.org/

International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 1457
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

ronment condition. Classes represent the subsets of values for
each classification. Next, for the identified classification and
classes a classification tree is constructed, followed by test case
table and test case generation. Their experiments found that
CTM method showed a good error detection rate and the me-
thod was amenable to automation. Their implication suggests
that identification of parameters and values is a creative task
and hence is not amenable to 100 percent automation.

Thomas J Ostrand et.al [13] proposed a systematic method
called as the category partition method (CPM) to generate
functional tests from specifications. CPM involves a series of
decomposition steps. The tester decomposes the functional
specification into separately testable functional units. The next
level of decomposition involves identifying the parameters
and environment conditions that affect the execution behavior
of each of the functional units and partitioning them into cate-
gories by carefully reading the specification. The next step in
the decomposition process is to partition the categories into
distinct choices which comprise of different kinds of values,
which are probable for the category. The tester then identifies
constraints embedded among the choices. The identified cate-
gories, choices and constraints are written into a formal test
specification that is further processed by Test Specification
Language (TSL) test case generator tool.

 AETG [14] present their experience in using AETGspec
notation which is a part of AETG software system for
representing the input space model. The authors applied the
technique to four applications of Bellcore products and
brought out that modeling the test space is very fundamental
and needs domain knowledge so that it maps correctly

Chen et al. [15] explain that CPM and CTM methods for
identifying categories and choices are adhoc in nature and the
quality of test cases generated based on these techniques may
be in question. The authors have conducted three empirical
studies and based on their experience have articulated a
checklist for detecting missing categories and problematic cat-
egories and choices. The checklist helps the testers to avoid
them and also it provides an insight into developing systemat-
ic methods for identification of categories and choices. In [16]
they present an algorithm to identify the categories and choic-
es, and some of the choice relations based on the guard condi-
tions in the activity diagrams. The guard conditions are asso-
ciated with execution behavior of the software and therefore
they are likely to hold the modeling information. However,
the identified categories and choices should be further refined
by tester manually.

Mats Grindal and Jeff Offutt [17] focuses on the overall
flow of the modeling process. The author suggests two ap-
proaches to input parameter modeling namely interface-
based- IPM and Functionality Based-IPM. The strength and
weakness comparison of both the approaches reveals that
Functionality Based-IPM includes more semantic information
and useful for subsequent test case generation. The paper de-
fines some additional properties like missing factors, irrele-
vant parameters, that a set of parameters must satisfy and
some strategies for identifying values like boundaries, valid
and invalid values, etc. Overall the paper gives more guidance

for identification of model elements, and it also supports for
evaluation of completeness of IPM.

Grindal M et al. [5] have performed an evaluation of five
different combination strategies for selecting a subset of test
cases from test model. The evaluation comparison was based
on the number of test cases generated, the number and type of
faults identified, the decision coverage and failure size. Their
observation relating to IPM is, for a fixed number of parame-
ter-values, it is good to have many parameters with few values
for Each Choice (EC), Base Choice (BC), Orthogonal Array
(OA), and AETG test selection methods and it is better to have
few parameters with many values for All choice (AC) method.
In their experiments, the model was kept stable, and the test
selection strategies were varied. Experimenting with combina-
tions of different IPM methods with different test selection
strategies and investigating how and in what way it affects
testing issues is still an open research issue.

Mehra N et al. [18] proposes an input space modeling
strategy for combinatorial testing. The strategy comprises of 2
steps, input structure modeling(ISM) and input parameter
modeling (IPM). First ISM tries to detect the structural rela-
tionship among the different components in the input space
using two types of structures namely flat and graph. The
graph structure is modeled using IML notations and is useful
to represent composition relationships. After the input struc-
ture is modeled, the second step is IPM for which the basic
methods of CPM and CTM are used.

Itai Segall et al. have worked on input space modeling for
combinatorial testing. In one of the papers [19], they have pre-
sented a Cartesian product based method to derive the CTD
model and represented the model using binary decision dia-
grams(BDD).

Itai Segall et al. in [20] introduce two new constructs name-
ly counters and value properties in the CTD model. Counters
are parameters that count values in other parameters. Proper-
ties are defined for parameters complexity of capturing the
restrictions and simplify the modeling activity. And in [21]
they list some common pitfalls regarding completeness, cor-
rectness, and redundancy that affects the CTD model. The
authors have suggested solutions for some of the common
patterns, like optional and conditionally excluded values, mul-
ti-selection, ranges and boundaries, order and padding, mul-
tiplicity and symmetry.

Preeti Satish et.al have described a rule based approach to
derive a CTD model from UML activity diagram [22] and se-
quence diagram [23]. A parser has been implemented to parse
the XMI representations of the UML diagrams based on the
formulated rules and arrive at an initial set of parameters, val-
ues, and constraints. Further manual refinement of the model
is necessary making the process semi-automatic.

Sabharwal et al. [24] propose to derive test model elements
from source code. The source code is first converted to flow
graph, onto which data flow analysis is performed to identify
the CT interactions. Schroeder and Korel et al. [25] support
modeling by recognizing the program input and program
output relationship.

IJSER

http://www.ijser.org/

International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 1458
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Sabharwal et al. [24] propose to derive test model elements
from source code. The source code is first converted to flow
graph, onto which data flow analysis is performed to identify
the CT interactions. Schroeder and Korel et al. [25] support
modeling by recognizing the program input and program
output relationship.

Apart from how to derive the test model, validating the
model is also an important research aspect. Paolo Validation
[30] focuses on this aspect and present a paper, on how to va-
lidate the model. The validation factors considered are based
on (1) consistency of constraints, (2) constraint implied by oth-
er constraint and (3) are the parameter-value identified are
necessary?

Though the main focus of the authors in [27], [28], [29] has
been the test suite generation, Lott et al. [27] have presented
example system requirements along with guidelines for mod-
eling the input space which serves as a tutorial for applying
CT. Czerwonka [28] on how to model the input space in prac-
tical so that pure pairwise testing approach more applicable
and Krishnan et al. [29] have given hints on how to identify
the model elements from natural language.

We summarize the work carried in the chronological order
as shown in table 1. The table heads illustrate the author and
year, the input considered for deriving the CT test model, the
method used and Automation level.

TABLE 1. SUMMARY OF WORK CARRIED IN CTD DERIVATION IN CHRONOLOGICAL ORDER

Authors Year Source/Input Method used for test Design Automation
 Level

Grochtmann &
Grimm

1995 Requirements Specification CTM Manual

Thomas J Ostrand et
al.

1988 Requirements Specification CPM Manual

S. R Dalal et al. 1999 Requirements Specification AETGspec Manual

Robert M.
Herons et al.

2003 Formal Specification ‘Z” Signature and Predicate based Semi-automatic

Chen T.Y et al. 2004

Requirements Specification Choice relation framework
based on CPM, CTM

Manual

Chen T.Y et al. 2004 UML Activity Diagram CPM Semi-automatic
Krishnan et al. 2007 Requirements Specification Heuristics Manual

Mats Grindal et al. 2007 Requirements Specification CPM based Manual

Itai Segall et al. 2012 Functional Specification BDD based Manual
Itai Segall et al. 2013 Functional Specification Experience & Analysis based Manual
Itai Segall et al. 2013 Functional Specification Experience & Analysis based Manual
Mehra Borazjany et
al.

2013 Functional Specification Input Structure
Modeling(ISM) & IPM

Manual

Preeti Satish et al. 2013 UML Activity Diagram Rule based Approach Semi-automatic

Preeti Satish et al. 2014 UML Sequence Diagram Rule based approach Semi-automatic

Sabharwal et al. 2014 Source Code Rule Based Semi-automatic

M Spichkova et al. 2015 Test Scenarios Rule based framework Semi-automatic

IJSER

http://www.ijser.org/
https://scholar.google.co.in/citations?user=kFYE6gkAAAAJ&hl=en&oi=sra

International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 1459
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

5 CONCLUSION
 We provide an insight into the research carried out in the

modeling step of combinatorial testing. It is one of the most im-
portant step because the subsequent steps highly depend on the
model. Modeling is an art, and the test designer needs domain
understanding and experience. Therefore, it is not possible to
completely automate the process. However, studies show that it
can be semi-automated, thereby helping the test designer in his
decisions. The survey also reveals that the various inputs consi-
dered for model derivation are requirements specifications, UML
design artifacts, test scenarios, and source code. However more
empirical study in each of the cases is still required along with
new automated approaches, and hence CT modeling has a huge
scope for future expansions.

References
[1] White-box testing - Wikipedia, the free encyclopedia.

[https://en.wikipedia.org/wiki/White-box_testing]
[2] Black-box testing - Wikipedia, the free encyclopedia.

[https://en.wikipedia.org/wiki/Black-box_testing]
[3] Kuhn, Rick, Yu Lei, and Raghu Kacker. "Practical combinatorial testing:

Beyond pairwise." It Professional 10, no. 3 (2008): 19-23.
[4] Nie, Changhai, and Hareton Leung. "A survey of combinatorial testing."

ACM Computing Surveys (CSUR) 43, no. 2 (2011): 11.
[5] Grindal, Mats, Jeff Offutt, and Sten F. Andler. "Combination testing

strategies: a survey." Software Testing, Verification and Reliability 15, no. 3
(2005): 167-199.

[6] Khalsa, Sunint Kaur, and Yvan Labiche. "An orchestrated survey of
available algorithms and tools for combinatorial testing." In 2014 IEEE 25th
International Symposium on Software Reliability Engineering, pp. 323-334.
IEEE, 2014.

[7] Utting, Mark, and Bruno Legeard. Practical model-based testing: a tools
approach. Morgan Kaufmann, 2010.

[8] El‐Far, Ibrahim K., and James A. Whittaker. "Model‐Based Software
Testing." Encyclopedia of Software Engineering (2001).

[9] Dias Neto, Arilo C., Rajesh Subramanyan, Marlon Vieira, and Guilherme H.
Travassos. "A survey on model-based testing approaches: a systematic
review." In Proceedings of the 1st ACM international workshop on
Empirical assessment of software engineering languages and technologies:
held in conjunction with the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE) 2007, pp. 31-36. ACM, 2007.

[10] Utting, Mark, Alexander Pretschner, and Bruno Legeard. "A taxonomy of
model‐based testing approaches." Software Testing, Verification and
Reliability 22, no. 5 (2012): 297-312.

[11] Kuhn, D. Richard, Raghu N. Kacker, and Yu Lei. Introduction to
combinatorial testing. CRC press, 2013.

[12] Grochtmann, Matthias, Joachim Wegener, and Klaus Grimm. "Test case
design using classification trees and the classification-tree editor CTE." In
Proceedings of Quality Week, vol. 95, p. 30. 1995.

[13] Ostrand, Thomas J., and Marc J. Balcer. "The category-partition method for
specifying and generating fuctional tests." Communications of the ACM 31,
no. 6 (1988): 676-686.

[14] Cohen, David M., Siddhartha R. Dalal, Michael L. Fredman, and Gardner C.
Patton. "The AETG system: An approach to testing based on combinatorial

design." IEEE Transactions on Software Engineering 23, no. 7 (1997): 437-
444.

[15] Chen, Tsong Yueh, Pak-Lok Poon, Sau-Fun Tang, and T. H. Tse. "On the
identification of categories and choices for specification-based test case
generation." Information and software technology 46, no. 13 (2004): 887-
898.

[16] Chen, Tsong Yueh, Pak-Lok Poon, Sau-Fun Tang, and T. H. Tse.
"Identification of categories and choices in activity diagrams." In Fifth
International Conference on Quality Software (QSIC'05), pp. 55-63. IEEE,
2005.

[17] Grindal, Mats, and Jeff Offutt. "Input parameter modeling for combination
strategies." In Proceedings of the 25th conference on IASTED International
Multi-Conference: Software Engineering, pp. 255-260. ACTA Press, 2007.

[18] Borazjany, Mehra N., Laleh Sh Ghandehari, Yu Lei, Raghu Kacker, and
Rick Kuhn. "An input space modeling methodology for combinatorial
testing." In Software Testing, Verification and Validation Workshops
(ICSTW), 2013 IEEE Sixth International Conference on, pp. 372-381.
IEEE, 2013.

[19] Segall, Itai, Rachel Tzoref-Brill, and Eitan Farchi. "Using binary decision
diagrams for combinatorial test design." In Proceedings of the 2011
International Symposium on Software Testing and Analysis, pp. 254-264.
ACM, 2011.

[20] Segall, Itai, Rachel Tzoref-Brill, and Aviad Zlotnick. "Common patterns in
combinatorial models." In 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, pp. 624-629. IEEE, 2012.

[21] Segall, Itai, Rachel Tzoref-Brill, and Aviad Zlotnick. "Simplified modeling
of combinatorial test spaces." In 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation, pp. 573-579. IEEE, 2012.

[22] Satish, Preeti, K. Sheeba, and Krishnan Rangarajan. "Deriving
combinatorial test design model from UML activity diagram." In Software
Testing, Verification and Validation Workshops (ICSTW), 2013 IEEE Sixth
International Conference on, pp. 331-337. IEEE, 2013.

[23] Segall, Itai, Rachel Tzoref-Brill, and Aviad Zlotnick. "Common patterns in
combinatorial models." In 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, pp. 624-629. IEEE, 2012.

[24] Sabharwal, Sangeeta, and Manuj Aggarwal. "Identifying Interactions for
Combinatorial Testing using Data Flow Techniques." ACM SIGSOFT
Software Engineering Notes 39, no. 6 (2014): 1-4.

[25] Schroeder, Patrick J., and Bogdan Korel. Black-box test reduction using
input-output analysis. Vol. 25, no. 5. ACM, 2000.

[26] Spichkova, Maria, Anna Zamansky, and Eitan Farchi. "Towards a human-
centred approach in modelling and testing of cyber-physical systems." In
Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International
Conference on, pp. 847-851. IEEE, 2015.

[27] Lott, C., Ashish Jain, and S. Dalal. "Modeling requirements for
combinatorial software testing." In ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 4, pp. 1-7. ACM, 2005.

[28] Czerwonka, Jacek. "Pairwise testing in the real world: Practical extensions
to test-case scenarios." In Proceedings of 24th Pacific Northwest Software
Quality Conference, Citeseer, pp. 419-430. 2006.

[29] Krishnan, R., S. Murali Krishna, and P. Siva Nandhan. "Combinatorial
testing: learnings from our experience." ACM SIGSOFT Software
Engineering Notes 32, no. 3 (2007): 1-8.

[30] Arcaini, Paolo, Angelo Gargantini, and Paolo Vavassori. "Validation of
models and tests for constrained combinatorial interaction testing." In
Software Testing, Verification and Validation Workshops (ICSTW), 2014
IEEE Seventh International Conference on, pp. 98-107. IEEE, 2014.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Functional Testing, MBT and CT
	3 Overview of Test Model
	5 Conclusion
	References

